Feature selection for multi-label naive Bayes classification

نویسندگان

  • Min-Ling Zhang
  • José María Peña Sánchez
  • Víctor Robles
چکیده

Min-Ling Zhang, José M. Peña and Victor Robles College of Computer and Information Engineering, Hohai University, Nanjing 210098, China; Tel.: +86-25-8378-7071; Fax: +86-25-8378-7793; Email: [email protected] National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210093, China Department of Computer Architecture and Technology, Technical University of Madrid, Madrid, Spain; Tel.: +34-91-336-7377; Fax: +34-91-336-7376; Email: {jmpena, vrobles}@fi.upm.es

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Approach for Text Documents Classification with Invasive Weed Optimization and Naive Bayes Classifier

With the fast increase of the documents, using Text Document Classification (TDC) methods has become a crucial matter. This paper presented a hybrid model of Invasive Weed Optimization (IWO) and Naive Bayes (NB) classifier (IWO-NB) for Feature Selection (FS) in order to reduce the big size of features space in TDC. TDC includes different actions such as text processing, feature extraction, form...

متن کامل

MLIFT: Enhancing Multi-label Classifier with Ensemble Feature Selection

Multi-label classification has gained significant attention during recent years, due to the increasing number of modern applications associated with multi-label data. Despite its short life, different approaches have been presented to solve the task of multi-label classification. LIFT is a multi-label classifier which utilizes a new strategy to multi-label learning by leveraging label-specific ...

متن کامل

A New Fine-Grained Weighting Method in Multi-Label Text Classification

Multi-label classification is one of the important research areas in data mining. In this paper, a new multilabel classification method using multinomial naive Bayes is proposed. We use a new fine-grained weighting method for calculating the weights of feature values in multinomial naive Bayes. Our experiments show that the value weighting method could improve the performance of multinomial nai...

متن کامل

Supervised Classification Using Balanced Training

We examine supervised learning for multi-class, multi-label text classification. We are interested in exploring classification in a realworld setting, where the distribution of labels may change dynamically over time. First, we compare the performance of an array of binary classifiers trained on the label distribution found in the original corpus against classifiers trained on balanced data, wh...

متن کامل

Pattern Classification Using Bag-of-Keypoints

The classifications when a target is not properly extracted due to improper segmentation include the multiclass case, in which the target contains objects belonging to different classes. In this paper, a method is applied to transform the multiclass case to a single-label classification by creating merged classes. To train merged classes, each feature must be defined in a very small domain, and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Inf. Sci.

دوره 179  شماره 

صفحات  -

تاریخ انتشار 2009